
LLNL-TR-420722

Reconcile: A Coreference
Resolution Research Platform

V. Stoyanov, C. Cardie, N. Gilbert, E. Riloff, D.
Buttler, D. Hysom

November 25, 2009

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.

Reconcile: A Coreference Resolution Research Platform

Veselin Stoyanov
Claire Cardie

Dept. of Computer Science
Cornell University

Ithaca, NY
ves@cs.cornell.edu

cardie@cs.cornell.edu

Nathan Gilbert
Ellen Riloff

School of Computing
University of Utah
Salt Lake City, UT

ngilbert@cs.utah.edu

riloff@cs.utah.edu

David Buttler
David Hysom

Lawrence Livermore
National Laboratory

Livermore, CA
buttler1@llnl.gov

hysom1@llnl.gov

Abstract
Despite the availability of standard data sets and
metrics, approaches to the problem of noun phrase
coreference resolution are hard to compare empir-
ically due to the different evaluation setting stem-
ming, in part, from the lack of comprehensive coref-
erence resolution research platforms. In this tech
report we present Reconcile, a coreference resolu-
tion research platform that aims to facilitate the im-
plementation of new approaches to coreference res-
olution as well as the comparison of existing ap-
proaches. We discuss Reconcile’s architecture and
give results of running Reconcile on six data sets
using four evaluation metrics, showing that Recon-
cile’s performance is comparable to state-of-the-art
systems in coreference resolution.

1 Introduction

Noun phrase coreference resolution (or simply
coreference resolution) is the problem of iden-
tifying all noun phrases (NPs) that refer to the
same real-world entity in text. Coreference reso-
lution is one of the fundamental problems of natu-
ral language processing (NLP) because of its use-
fulness for other NLP tasks (e.g. Morton (1999),
Steinberger et al. (2007)) as well as the theoreti-
cal interest in understanding computational mech-
anisms involved in government, binding and lin-
guistic reference. Figure 1 displays an example of
coreferent noun phrases from a sample news arti-
cle.

Several formal evaluations have been conducted
for the coreference resolution task, and the data
sets created for this evaluations have become stan-
dard benchmarks in the field (e.g., MUC and
ACE). However, it is still frustratingly difficult to
compare results across different coreference res-
olution systems. Reported scores for coreference
resolution vary wildly across data sets, evaluation
metrics, and system configurations.

We believe that one root cause of these dis-
parities is the high cost of implementing an end-

to-end coreference resolution system. Corefer-
ence resolution is a complex problem, and suc-
cessful systems must tackle a variety of non-trivial
subproblems, which themselves require substan-
tial implementation efforts. As a result, many re-
searchers exploit gold-standard annotations from
available data sets as a substitute for component
technologies to solve these subproblems. Many
published research results use gold standard an-
notations to identify the NPs (substituting for
mention/markable detection), to distinguish the
anaphoric NPs from the non-anaphoric NPs (sub-
stituting for anaphoricity determination), to iden-
tify named entities (substituting for named en-
tity recognition), and to identify semantic types
of nominals (substituting for semantic class iden-
tification). The use of gold standard annota-
tions leads to an unrealistic evaluation setting, and
makes it impossible to directly compare results
against coreference resolvers that solve all of these
subproblems from scratch.

The problem is further magnified by the avail-
ability of several (non-trivial) evaluation mea-
sures, and data sets that have substantially differ-
ent task definitions and annotation formats. Un-
derstandably, research efforts rarely implement all
of the evaluation metrics or evaluate their systems
on all of the data sets. As a result, even when dif-
ferent approaches use the same system configura-
tion, they may conduct experiments on different
data sets or use different evaluation metrics, which
again makes it impossible to directly compare re-
sults.

In addition, coreference is a pervasive prob-
lem in natural language processing, so in princi-
ple nearly any NLP application could benefit from
having an effective coreference resolver. But the
hefty price of creating a coreference resolver from

Figure 1: Example noun phrase coreference chains from a sample news article.

scratch often prohibits both researchers and NLP
practitioners from incorporating coreference reso-
lution in larger application systems.

To address these issues, we have created a plat-
form for coreference resolution, called Reconcile,
that can serve as a software infrastructure to sup-
port the creation, experimentation, and evaluation
of learning-based coreference resolvers. Our goal
in creating Reconcile was to build a coreference
resolution system that would allow for different
component technologies to be easily swapped in
and out (e.g., different parsers, NER systems, or
classification algorithms) and for new features to
be easily created and plugged in. We also wanted
a platform that would provide built-in capabilities
to process many of the standard benchmark data
sets, respecting their idiosyncratic formats and
task definitions, as well as evaluation tools to pro-
duce scores that conform to multiple widely used
evaluation metrics. This software infrastructure
will allow researchers to focus on the new ideas
and methodological improvements that they wish
to investigate, without having to invest the sub-
stantial time and effort required to implement the
various subcomponents themselves. Furthermore,
this platform will allow researchers to more eas-
ily evaluate the impact of their ideas in a complete
end-to-end coreference resolution system, with re-
spect to multiple standard data sets and evaluation
metrics. We hope that this software infrastructure
will help to advance the state-of-the-art in confer-

ence resolution by enabling researchers to easily
produce results that are directly comparable, yield-
ing better insights into which ideas and techniques
perform the best.

This technical report describes the Reconcile
coreference resolution platform. Reconcile was
designed with the following 6 desiderata in mind:

• implement the basic underlying software ar-
chitecture of contemporary state-of-the-art
learning-based coreference resolution sys-
tems.

• support text analysis on most of the standard
coreference resolution data sets.

• implement many widely used coreference
resolution scoring metrics.

• exhibit state-of-the-art coreference resolution
performance (i.e., it can be configured to cre-
ate a coreference resolver that achieves per-
formance levels that are close to the best re-
sults previously reported in the literature).

• can be extended with new methods and fea-
tures with little effort.

• is relatively fast and easy to configure and
run.

While several other coreference systems are
publicly available (e.g., Poesio and Kabadjov
(2004), Qiu et al. (2004) and Versley et al. (2008)),

none of them meets all six of these requirements
(see Related Work section for more details). Rec-
oncile is a modular software platform that ab-
stracts the basic architecture of the most contem-
porary supervised learning-based coreference res-
olution systems (e.g. Soon et al. (2001), Ng and
Cardie (2002), McCallum and Wellner (2004), Ng
(2008)) and achieves performance comparable to
the current state-of-the-art on several benchmark
data sets commonly used to evaluate coreference
resolution systems. Additionally, due to its modu-
larity, Reconcile can be easily reconfigured to use
different algorithms, features, preprocessing ele-
ments, evaluation settings and metrics.

This report explains how Reconcile is orga-
nized, what it can do, and how it performs on sev-
eral MUC and ACE data sets. Section 2 first ex-
plains how Reconcile differs from other publicly
available coreference resolution software systems.
Section 3 presents Reconcile’s organization and
describes its subcomponents. Finally, Section 4.3
shows experimental results for Reconcile on a va-
riety of different data sets and with several evalu-
ation metrics.

2 Related Work

Several coreference resolution systems are cur-
rently publicly available. JavaRap (Qiu et al.,
2004) is an implementation of the Lappin and Le-
ass’s (1994) Resolution of Anaphora Procedure
(RAP). JavaRap resolves only pronouns and, thus,
it is not directly comparable to Reconcile. Gui-
TAR (Poesio and Kabadjov, 2004) and BART
(Versley et al., 2008) are both modular systems
that target the complete the full coreference res-
olution task. As such, both of these systems meet
the majority of the desiderata set forth in Section
1. BART can be considered an alternative to Rec-
oncile, although we believe that Reconcile’s ap-
proach is more flexible than BART. The architec-
ture and system components of Reconcile (includ-
ing a comprehensive set of implemented features
that draw on the expertise of state-of-the-art su-
pervised learning approaches, such as Soon et al.
(2001) and Ng and Cardie (2002)) result in perfor-
mance that is closer to the state-of-the-art.

The problem of coreference resolution has re-
ceived much research attention, resulting in a rich
variety of approaches, algorithms and features.
Reconcile’s architecture has been modeled after

the coreference system of Soon et al. (2001) be-
cause of its simplicity and its proven competitive
performance. In addition, Reconcile includes in its
base distribution the refined and extended feature
set of Ng and Cardie (2002).

Reconcile has been modeled after typical su-
pervised learning approaches to coreference res-
olution because of the popularity and relatively
good performance of these systems. However,
there have been many other approaches to coref-
erence resolution, including recent unsupervised
and semi-supervised approaches (e.g. Ng (2008)
and Haghighi and Klein (2007)), structured ap-
proaches (e.g. McCallum and Wellner (2004) and
Finley and Joachims (2005)), competition ap-
proaches (e.g. Yang et al. (2003)) and a bell-tree
search approach Luo et al. (2004). Most of the
approaches can be directly implemented in Rec-
oncile, while some (such as the latter two) require
more serious modifications to the system, but can,
nevertheless, be run in the system.

In Section 4, we position Reconcile’s perfor-
mance with respect to the state-of-the-art by com-
paring Reconcile’s results on several standard data
sets with the most comparable state-of-the-art re-
sults reported in the literature.

3 System Description

3.1 Overall Architecture

Reconcile was designed to be a research test-
bed capable of implementing most current state-
of-the-art approaches to coreference resolution.
Thus, the basic architecture of the system in-
cludes five major steps, which are performed by
most coreference resolution systems (e.g., (Soon
et al., 2001), (Ng and Cardie, 2002), (Ng, 2008),
(Haghighi and Klein, 2007), (McCallum and Well-
ner, 2004) and (Finley and Joachims, 2005)).
Starting with a corpus of text documents together
with a manually annotated coreference resolution
answer key1, Reconcile performs the following 5
steps, in order:

1. Preprocessing. All documents are passed
through a series of (external) linguistic pro-
cessors such as tokenizers, part-of-speach

1When Reconcile is applied to texts to perform corefer-
ence resolution, Reconcile does not require the presence of
a manually annotated answer key. For the purposes of this
report, however, we will assume that Reconcile is being used
both to create a coreference resolver and to evaluate its per-
formance on standard data sets, which requires answer keys

Figure 2: Diagram of the Reconcile tool chain.

taggers, syntactic parsers, etc. These compo-
nents produce annotations of the text in the
documents.

2. Feature generation. Using the annotations
produced during preprocessing, Reconcile
creates a set of features. Each feature is
an attribute that characterizes a pair of noun
phrases. For example, a feature might denote
whether two noun phrases agree in number,
or whether two noun phrases share any words
in common.

3. Classification Since Reconcile adopts a su-
pervised learning framework, the system can
be used both to train a classifer (using train-
ing texts paired with their answer keys) and
to apply the classifier to new text documents.
The features are used to create one feature
vector for each pair of noun phrases. When
performing coreference resolution, the clas-
sifier is given the feature vector representing
a noun phrase pair and it returns a score indi-
cating how likely it is that the NPs are coref-
erent.

4. Clustering. Based on the scores output by
the classifier, Reconcile uses a clustering al-
gorithm to form the final set of coreference
clusters (chains).

5. Scoring. Finally, Reconcile runs scoring al-
gorithms that compare the coreference chains
produced by the system to the gold standard

coreference chains in the answer key. (This
is only possible if the documents have corre-
sponding answer keys.)

Note that some structured coreference resolu-
tion algorithms (e.g., (McCallum and Wellner,
2004) and (Finley and Joachims, 2005)) combine
the classification and clustering steps above. Rec-
oncile can easily accommodate this modification.

Each of the five major steps described above
can include multiple substeps and invoke several
components. Reconcile allows various subsystems
to be introduced or removed according to the de-
sires of the user. Reconcile’s standard distribu-
tion comes with a comprehensive set of imple-
mented components. Additionally, the user is al-
lowed to implement and introduce her own sub-
systems/components by using some simple API’s.
Next, we describe the set of implemented com-
ponents for each of the five step that come pre-
packaged in the standard Reconcile distribution,
giving more details of the steps in the process.

3.2 Component Subsystems

One of the primary goals in developing Reconcile
was to support a plug-and-play architecture where
different components could be easily swapped in
and out. Toward this end, we have included sev-
eral different software options for many of the sub-
tasks that Reconcile performs. The components
that are included in the current release of Recon-
cile are described below, but it should also be easy

for anyone to plug in their own favorite component
to perform any of these tasks.

3.2.1 Preprocessing

Reconcile performs a series of preprocessing steps
and supports a variety of different preprocessing
tools:

Sentence Splitting: Reconcile offers two dif-
ferent sentence segmentation options: The Univer-
sity of Illinois Urbana-Champaign sentence seg-
mentation tool, and the OpenNLP project’s sen-
tence splitter (Baldridge, J., 2005). The UIUC seg-
mentation tool is a very fast, heuristic approach.
The OpenNLP sentence detector is based on a
maximum entropy classifier with a standard En-
glish model that can be retrained by the user if de-
sired.

Tokenizing: The tokenizer is responsible for
identifying word boundaries based on whitespace
and punctuation to produce tokens that are used
by the downstream components, such as parsers
and part of speech taggers. The tokenizer included
in the Reconcile distribution is the OpenNLP
project’s maximum entropy tokenizer with a stan-
dard English model.

Part of Speech Tagging: The Reconcile distri-
bution includes the OpenNLP maximum entropy
part-of-speech (POS) tagger. Additionally, POS
tags are produced by the two parsers listed be-
low, so POS tags could be easily obtained from
the parsers.

Parsing: Reconcile currently includes two
probabilistic context-free grammar (PCFG) full
parsers, the Stanford (Klein and Manning, 2003)
parser and the Berkeley (Petrov and Klein, 2007)
parser. The standard models provided with each
of these parsers have been trained on Wall Street
Journal data. The Sundance shallow parser (Riloff
and Phillips, 2004) is also available for use, al-
though some of the features supported by Recon-
cile (see the Appendix) require the use of a full
parser.

Named Entity Recognition: Reconcile sup-
ports two named entity recognizers: the OpenNLP
Maximum-Entropy NER system, and the Stanford
Conditional Random Field NER system (Finkel et
al., 2004). All available models for both systems
have been trained on Wall Street Journal texts. In
addition, in-house trained models are provided to

improve date and time recognitions.

Coreference Element Identification: The
MUC and ACE evaluations used different criteria
to define the set of NPs2 that can participate in the
coreference relation. For the sake of generality,
we will use the term coreference element (CE) to
refer to the set of linguistic expressions that par-
ticipate in the coreference relation. We define the
term CE to be roughly equivalent to (a) the notion
of markable with respect to the MUC task defi-
nition and (b) the structures that can be mentions
with respect to the ACE task definition.

Reconcile includes CE extractors that conform
to both the MUC and ACE specifications. These
CE extractors were developed in-house and rely
on both parsing and named entity recognition.3

At a high level, both the MUC and ACE evalu-
ations define NPs as nouns, pronouns, and noun
phrases. However, the MUC definition excludes
(1) “nested” named entities (NEs) (e.g. “Amer-
ica” in “Bank of America”), (2) relative pronouns,
and (3) gerunds, but allows (4) nested nouns (e.g.
“union” in “union members”). The ACE defini-
tion, on the other hand, includes relative pronouns
and gerunds, excludes all nested nouns that are not
themselves NPs, and allows premodifier NE men-
tions of geo-political entities and locations, such
as “Russian” in “Russian politicians”.

Another major distinction is that ACE restricts
CEs to be entities belonging to one of seven se-
mantic classes: person, organization, geo-political
entity, location, facility, vehicle, and weapon.
MUC has no semantic restrictions.

Figure 3 shows the detailed algorithm that Rec-
oncile uses to collect all coreference elements
from a document.

3.2.2 Classification
Most supervised learning approaches for corefer-
ence resolution rely on a pairwise function to de-
termine whether or not two NPs are coreferent. A
classifier is trained on NP pairs that are labeled as
either coreferent or not coreferent, and can then be
applied to new NP pairs to determine whether that
pair if NPs is coreferent. Reconcile adopts this
pairwise classification framework.

2Strictly speaking, both the MUC and ACE evaluations
define NP coreference resolution over structures that are not
always NPs, but both task definitions are generally described
as NP coreference resolution.

3Our CE extractors were modeled after the extractors ini-
tially developed by Ng and Cardie (2002).

procedure ExtractCorefElements(D, NPs, NEs){
A text document D
NPs := all noun phrases in D.
NEs := the set of named entities in D.

/* Filtering step. */
foreach noun phrase np ∈ NPs do
if np contains a preposition or embedded clause:

Remove np from NPs
if np is the child of another np:

Remove np from NPs

/* Look for overlapping NPs and NEs */
foreach noun phrase np ∈ NPs do

foreach named entity ne ∈ NEs do
if a np bytespan overlaps with a named entity ne bytespan:
Expand np’s bytespan so that it subsumes ne.

else if ne is a proper substring of np:
Add ne to NPs

/* Add in named entities that are not part of the NP set. */
foreach named entity ne in NEs do
/* The contains function returns true if the second argument is a substring of the first. */
if ne /∈ NP and ∀np ∈ NPS, ne /∈ contains(np, ne):

Add ne to NPs

/* Add in nested noun phrases that are not already in the set. */
foreach noun phrase np ∈ NPs do

if np contains a nested noun phrase nnp /∈ NPs:
Add nnp to NPs

return NPs
}

Figure 3: The algorithm for generating coreference elements.

To train a classifier, Reconcile creates a fea-
ture vector for every pair of NPs in a document.
Therefore, given a document that contains n noun
phrases, the total number of feature vectors cre-
ated will be n2−n

2 . Once the classifier has been
trained, it can be given pairwise feature vectors
for unseen documents and it will output a prob-
ability indicating how likely it is that the two NPs
are coreferent.

We developed an extensive set of features,
based largely on the feature sets that have been
used by other successful coreference resolution
systems, most notably the Soon et al. (Soon et
al., 2001) and Cardie & Ng (Soon et al., 2001)
systems. A comprehensive list and description of
the 89 features that are currently available in Rec-
oncile can be found in the Appendix. It should
be noted that some of the features rely on proper-
ties of NPs pairs, while others rely on individual
NPs. For example, the Gender feature has a value
of ’Y’ if the two NPs in the pair have the same
gender, whereas the Quote features simply deter-
mine whether an individual NP is surrounded by
quotes. Features that look at individual NPs are
cached so they are not recomputed every time an
NP participates in a pair.

The current Reconcile release supports a wide
variety of learning algorithms. Most of these
learning algorithms are included via the Weka

toolkit, which is interfaced and included as part
of the Reconcile distribution. Additionally, Rec-
oncile includes interfaces for the libSVM (Chang
and Lin, 2001) package and SVMlight (Joachims,
2002), both of which are implementations of Sup-
port Vector Machines (SVMs).

3.2.3 Clustering Algorithms
The last step of the coreference resolution pro-
cess is clustering. The goal of the clustering al-
gorithm is to consolidate the pairwise decisions of
the classifiers and produce a coherent clustering of
the NPs in a document. Three different clustering
algorithms are implemented in Reconcile:

1. Single-link Clustering (Transitive Closure):
This is a simple clustering algorithm that per-
forms transitive closure of the clustering rela-
tion. In other words, the single-link clusterer
groups together all NPs that are connected by
a path of coreferent links.

2. Best-First: Most classifiers return a value
that can be interpreted as a “confidence mea-
sure.” For instance, an SVM may return a
distance from the hyperplane for each pair.
Best-first clustering uses the classifier’s con-
fidence value to cluster each noun phrase
with its most confident antecedent, given that
the value for the most confident antecedent is
above a pre-specified threshold.

3. Most Recent First: This clustering algorithm
pairs each noun phrase with the single most
recent antecedent that is labeled as corefer-
ent. This algorithm follows the intuition that
the coreference relation is local.

3.2.4 Scoring
The coreference chains produced by the system
can be compared to gold standard answer keys
to quantitatively assess their quality. Toward that
end, Reconcile implements three widely-used au-
tomatic scoring functions, which are described be-
low.

MUC score. The MUC scoring algorithm (Vi-
lain et al., 1995) computes the F1 score (harmonic
mean) of precision and recall based on the identi-
fication of unique coreference links.

B3 score. The B3 algorithm (Bagga and Bald-
win, 1998) computes a precision and recall score
for each coreference element (ce) using the fol-
lowing formulas:
precision(ce) = |Rce ∩Kce|/|Rce|
recall(ce) = |Rce ∩Kce|/|Kce|,

where Rce is the coreference chain to which ce is
assigned in the response (i.e. the system-generated
output) and Kce is the coreference chain that con-
tains ce in the key (i.e. the gold standard). Pre-
cision and recall for a set of documents are com-
puted as the mean over all coreference elements
(CEs) in the documents. The final B3 score is the
F1 (harmonic mean) of precision and recall.

B3 Implementation Issues. Unlike the MUC
score, which counts links between CEs, B3 pre-
sumes that the gold standard and the system re-
sponse are clusterings over the same set of NPs.
This, of course, is not the case when the system
automatically identifies the CEs, so the scoring al-
gorithm requires a mapping between extracted and
annotated NPs. We will use the term twin(ce)
to refer to the unique annotated/extracted NP to
which the extracted/annotated NP is matched. We
say that a NP is twinless (has no twin) if no cor-
responding NP is identified. A twinless extracted
NP signals that the resolver extracted a spurious
NP, while an annotated NP is twinless when the
resolver fails to extract it. Unfortunately, it is un-
clear how the B3 score should be computed for
twinless NPs. Bengtson and Roth (2008) simply
discard twinless NPs, but this solution is likely too
lenient — it doles no punishment for mistakes on

twinless annotated or extracted NPs and it would
be tricked, for example, by a system that extracts
only the NPs about which it is most confident.

We propose two different ways to deal with
twinless NPs for B3. One option, B3all, retains
all twinless extracted NPs. It computes the preci-
sion as above when ce has a twin, and computes
the precision as 1/|Rce| if ce is twinless. (Simi-
larly, recall(ce) = 1/|Kce| if ce is twinless.)

The second option, B30, discards twinless
extracted NPs, but penalizes recall by setting
recall(ce) = 0 for all twinless annotated NPs.
Thus, B30 presumes that all twinless extracted
NPs are spurious.

CEAF Score. Luo’s (2005) CEAF score (for
Constrained Entity-Alignment F-Measure) is a
coreference resolution evaluation metric resem-
bling the ACE score. Similar to ACE, CEAF re-
lies on a measure of how well a response clus-
ter matches an answer key cluster and computes
an optimal mapping between answer key and re-
sponse clusters. CEAF differs from ACE in that
it computes recall by dividing the score of the op-
timal match by the score for mapping the key to
itself (i.e. the maximum is 1) and precision by di-
viding by the score of matching the response to
itself. The reported CEAF score is the F1 score
(harmonic mean of precision and recall).

Luo (2005) suggests several functions to score
the goodness of the match of a key cluster A and
response cluster B. We borrow one of these func-
tions: φ(A,B) = (2 ∗ |A ∩ B|)/(|A| + |B|). In
other words, the score for the match is the number
of items the two clusters have in common propor-
tional to the combined size of the two clusters.

4 Evaluation

In this section, we present experimental results
to compare the performance of a coreference re-
solver created with Reconcile against other state-
of-the-art supervised learning-based coreference
resolvers.

4.1 Data Sets
For evaluation we use the six most commonly used
coreference resolution data sets. Two of those are
from the MUC conferences (MUC-6, 1995; MUC-
7, 1997) and four are from the Automatic Con-
tent Evaluation (ACE) Program (NIST, 2004). For
ACE, we use only the newswire portion because
it is closest in composition to the MUC corpora.

MUC6 MUC7 ACE-2 ACE03 ACE04 ACE05

1. 0.5 THRESHOLD

MUC 70.40 58.20 65.76 66.73 56.75 64.30
B3all 69.91 62.88 77.25 77.56 73.03 72.82
B30 68.55 62.80 76.59 77.27 72.99 72.43

2. THRESHOLD ESTIMATION

MUC 68.50 62.80 65.99 67.87 62.03 67.41
B3all 70.88 65.86 78.29 79.39 76.50 73.71
B30 68.43 64.57 76.63 77.88 75.41 72.47

3. OPTIMAL THRESHOLD

MUC 71.20 62.90 66.83 68.35 62.11 67.41
B3all 72.31 66.52 78.50 79.41 76.53 74.25
B30 69.49 64.64 76.83 78.27 75.51 72.94

Table 1: Reconcile’s performance on six standard data sets.

System MUC6 MUC7
Soon et al. (2001) MUC 62.6 60.4
Ng and Cardie (2002) MUC 70.4 63.4
Yang et al. (2003) MUC 71.3 60.2

Table 2: Reported results for state-of-the-art coreference systems using comparable evaluation settings.

Statistics for each of the data sets are shown in
Table 3. When available, we use the standard
test/train split. Otherwise, we randomly split the
data into a training and test set following a 70/30
ratio.

dataset docs CEs chains CEs/ch tr/tst split
MUC6 60 4232 960 4.4 30/30 (st)
MUC7 50 4297 1081 3.9 30/20 (st)
ACE-2 159 2630 1148 2.3 130/29 (st)
ACE03 105 3106 1340 2.3 74/31
ACE04 128 3037 1332 2.3 90/38
ACE05 81 1991 775 2.6 57/24

Table 3: Dataset characteristics including the
number of documents, annotated CEs, coreference
chains, annotated CEs per chain (average), and
number of documents in the train/test split. We
use st to indicate a standard train/test split.

4.2 The ReconcileACL09 Configuration

We created a coreference resolution sys-
tem using Reconcile, which we will call
ReconcileACL09because this system was used to
conduct the experiments presented in (Stoyanov
et al., 2009). ReconcileACL09is modeled after
the state-of-the art system of Ng and Cardie
(2002), using many of the same features. The
ReconcileACL09system was configured using the
following subsystems and options:

1. Preprocessing

(a) Sentence Segmentation:
UIUC segmentation tool

(b) Tokenizer: OpenNLP
(c) POS Tagger: OpenNLP
(d) Parser: Berkeley parser
(e) Named Entity Recognizer: Stanford

NER system w/ additional LLNL models

2. Feature Set4 - SoonStr, ProStr, ProComp,
PNStr, WordsStr, WordOverlap, Modifier,
PNSubstr, WordsSubstr, Pronoun1, Pro-
noun2, Definite1, Definite2, Demonstrative2,
Embedded1, Embedded2, InQuote1, In-
Quote2, BothProperNouns, BothEmbedded,
BothInQuotes, BothPronouns, BothSubjects,
Subject1, Subject2, Appositive, MaximalNP,
Animacy, Gender, Number, SentNum,
ParNum, Alias, IAntes, Span, Binding,
Contraindices, Syntax, ClosestComp, In-
definite, Indefinite1, Prednom, Pronoun,
ContainsPN, Constraints, ProperNoun,
Agreement, ProperName, WordNetClass,
WordNetDist, WordNetSense, Subclass,
RuleResolve, ProResolve, SameSentence,
ConsecutiveSentences, AlwaysCompatible,
SameParagraph, HeadMatch, PairType,
Quantity, WNSynonyms

3. Classifier
4Full descriptions of the features are found in the Ap-

pendix.

4. Perceptron learning algorithm - from the
Weka toolkit (Witten and Frank, 2005). Run
for 15 iterations.

5. Clustering - Single-link Clustering - The
clustering thresholds were tuned by cross val-
idation of the training set as described in Sec-
tion 4.

4.3 Experimental Results
Table 1, box 1 shows the performance of
ReconcileACL09 using a default (0.5) threshold
for the coreference classifier. The MUC score is
highest for the MUC6 data set, while the four ACE
data sets show much higher B3 scores as com-
pared to the two MUC data sets. The latter occurs
because the ACE data sets include singletons.

The classification threshold, however, can be
gainfully employed to control the trade-off be-
tween precision and recall. This has not tradi-
tionally been done in learning-based coreference
resolution research — possibly because there is
not much training data available to sacrifice as a
validation set. Nonetheless, we hypothesized that
estimating a threshold from just the training data
might be effective. Our results (THRESHOLD ES-
TIMATION box in Table 1) indicate that this indeed
works well.5 With the exception of MUC6, re-
sults on all data sets and for all scoring algorithms
improve; moreover, the scores approach those for
runs using an optimal threshold (box 3) for the ex-
periment as determined by using the test set.

One of the goals of Reconcile was to provide a
platform that can be used to build to assemble a
coreference resolution system that exhibits perfor-
mance that is comparable to the state-of-the-art.
Unfortunately, due to the difficulties outlined in
Section 1, results presented here can be compared
only to a limited number of scores reported in the
literature. Table ?? lists some of the best scores
that are directly comparable to our system. Based
on these comparisons, ReconcileACL09does in-
deeed exhibit performance levels that are compa-
rable to the previously reported scores for state-of-
the-art supervised learning-based coreference re-
solvers.

5All experiments sample uniformly from 1000 threshold
values.

Appendix: Feature Set

The following 89 features are currently avail-
able in Reconcile:

1. Agreement - If both NPs agree on both num-
ber and gender, the value returned is ’C’ for
Compatible. If they disagree on either num-
ber or gender, ’I’ or Incompatible is returned.
’NA’ is returned if no gender or number infor-
mation is present for one or both of the NPs
in question.

2. Alias - If one NP is an alias of the other, this
returns ’C’ otherwise ’I’. Here we take Alias
to mean a variety of things, such as different
was of representing the same date, monetary
value or number. Also, information regard-
ing semantic type is used to determine if both
NPs are really two different names of the en-
tity, such as acronyms or abbreviations.

3. AlwaysCompatible - Always returns ’C’.

4. AlwaysIncompatible - Always returns ’I’.

5. AnaMed - This feature returns: m −
med(np1,np2))

m , wherem = len(np1) andmed
is the minimum edit distance.

6. Animacy - If both NPs agree of animacy, re-
turns ’C’, else returns ’I’. Uses semantic type
information.

7. AnteMed - Nearly the same as AnaMed, but
focuses on the antecedent. Returns m −
med(np1, np2)/m where m = len(np2).

8. Appositive - Return ’C’ if both NPs are in an
appositive construction, else returns ’I’. Uses
semantic type information.

9. Binding - Returns ’C’ if both NPs do not vi-
olate conditions B and C in Chomsky’s bind-
ing theory, else ’I’. In short, element α binds
elements β if and only if α c-commands β. A
node X c-commands node Y if and only if:

• X does not dominate Y
• Y does not dominate X
• The first branching node dominating X

also dominates Y .

10. BothDefinites - This feature checks for the
appearance of the article ’the’ in each NP. If

both start with the article, it returns ’C’, if
only one contains the article, ’NA’, else re-
turns ’I’.

11. BothEmbedded - Returns ’C’ if both NPs are
embedded NPs, ’NA’ if only one is, and ’I’ if
neither are.

12. BothInQuotes - Returns ’C’ if both NPs are
inside of quotes, ’NA’ if only one is, and ’I’
if neither are.

13. BothMCSubjects - Returns ’C’ if both NPs
are in the main clause, ’NA’ if only one is,
and ’I’ if neither are.

14. BothPronouns - Returns ’C’ if both NPs are
pronouns, ’NA’ if only one is, and ’I’ if nei-
ther are.

15. BothProperNames - Returns ’C’ if both NPs
are proper names, ’NA’ if only one is, and ’I’
if neither are.

16. BothProperNouns - Returns ’C’ if both NPs
are proper nouns, ’NA’ if only one is, and ’I’
if neither are.

17. BothSubjects - Returns ’C’ if both NPs are in
the subject position, ’NA’ if only one is, and
’I’ if neither are.

18. ClosestComp - This feature checks the se-
mantic compatibility between the two NPs. If
they are compatible and the closest, it returns
’C’, else ’I’. Uses semantic and named entity
information.

19. ConsecutiveSentences - Returns ’C’ if the
NPs are in consecutive sentences, otherwise
returns ’I’.

20. Constraints - Checks the compatibility of the
GENDER, NUMBER, CONTRAINDICES,
ANIMACY, PRONOUN and CONTAIN-
SPN, if all are compatible (or at least not In-
compatible types for the last four features),
then it returns ’C’, else ’I’.

21. ContainsPN - This features checks that both
NPs contain proper names and contain no
words in common, if this is true, it returns
’I’, else ’C’.

22. Contraindices - The following constraints are
implemented for this feature: (1) two NP’s

separated by a preposition cannot be coin-
dexed and (2) two non-pronominal NP’s sep-
arated by a non-copular verb cannot be coin-
dexed. If the two NP’s violate these condi-
tions, then returns ’I’, else it is ’C’.

23. Definite1 - Returns ’Y’ if the first NP starts
with ’the’, else ’N’.

24. Definite2 - Returns ’Y’ if the second NP
starts with ’the’, else ’N’.

25. Demonstrative2 - Returns ’Y’ if the second
NP starts with a demonstrative, i.e. this, that,
these and those. Returns ’N’ otherwise.

26. DocNo - The number of the document from
which the NPs came from. This is only used
as a bookkeeping measure. It is not used for
training or testing.

27. Embedded1 - ’Y’ if the first NP is an embed-
ded or nested NP, else ’N’.

28. Embedded2 - ’Y’ if the second NP is an em-
bedded or nested NP, else ’N’.

29. FullString1 - The full string of the first NP.

30. FullString2 - The full string of the second NP.

31. Gender - If the two NPs agree in gender,
then this feature returns ’C’, and ’I’ if they
disagree. If the gender information is not
known, then it returns ’NA’.

32. GramRole1 - The grammatical role of the
first NP.

33. GramRole2 - The grammatical role of the
second NP.

34. HeadMatch - Checks for matching head noun
between the two NPs, if they match, returns
’C’, else ’I’.

35. HeadNoun1 - The text of head noun of the
first NP.

36. HeadNoun2 - The text of head noun of the
second NP.

37. IAntes - Returns ’Y’ if the first NP is part of
a quoted string.

38. ID1BeginOffset - The beginning bytespan
offset of the first NP.

39. ID1EndOffset - The ending bytespan offset
of the first NP.

40. ID1 - The identification number of the first
NP, this is a bookkeeping feature and is not
used in training nor testing.

41. ID2BeginOffset - The beginning bytespan
offset of the second NP.

42. ID2EndOffset - The ending bytespan offset
of the second NP.

43. ID2 - The identificaiton number of the second
NP, this is a bookkeeping feature and is not
used in training nor testing.

44. Indefinite1 - ’I’ if the second NP is an indefi-
nite and is not an appositive, ’C’ otherwise.

45. Indefinite -

46. InQuote1 - Returns ’Y’ if the first NP is part
of a quoted string.

47. InQuote2 - Returns ’Y’ if the second NP is
part of a quoted string.

48. instClass - Weka bookkeeping feature, used
to determine if the current pair is a corefer-
ent instance or not. Must be included in any
feature list.

49. MaximalNP - If both NPs have the same
maximal NP projection, then return ’I’, else
returns ’C’.

50. MCSubject1 - Returns ’Y’ if the first NP is
the subject of the main clause.

51. MCSubject2 - Returns ’Y’ if the second NP
is the subject of the main clause.

52. Modifier - If the prenominal modifiers of one
np are a subset of the prenominal modifiers
of the other nps, then returns ’C’, else ’I’.

53. Number - If the two NPs agree in number,
then this feature returns ’C’, and ’I’ if they
disagree. If the gender information is not
known, then it returns ’NA’.

54. PairType - Encodes the type of the np pair,
i.e., if the pair are Proper nouns, pronouns,
definite or indefinite.

55. ParNum - The distance between noun phrases
in terms of paragraphs.

56. PNStr -If both NPs are proper names and the
same string, then ’C’, else ’I’.

57. PNSubstr - If both NPs are proper names and
one is a substring of the string, then ’C’, else
’I’.

58. Prednom - If the NPs form a predicate nomi-
nal construction, then ’C’, else ’I’. An exam-
ple: “Barack Obama is the U.S. president.”,
the U.S. President is acting as the predicate
nominal.

59. ProComp - If both NPs are what we call
“comparable” pronouns, such as he and his.

60. ProEquiv - If both NPs are pronouns and
agree in GENDER and NUMBER and appear
in consecutive sentences, then ’I’, else ’C’.

61. Pronoun1 - If NP1 is a pronoun, return ’Y’,
else ’N’.

62. Pronoun2 - If NP2 is a pronoun, return ’Y’,
else ’N’.

63. Pronoun - If NP1 is a pronoun and NP2 is not,
then return ’I’, else ’C’.

64. ProperName - If both NPs are proper names
and share no words in common, then returns
’I’, else ’C’.

65. ProperNoun - If both NPs are proper nouns
and share no words in common, then returns
’I’, else ’C’.

66. ProResolve - If one NP is a pronoun and the
other NP is its antecedent according to a rule-
based algorithm, then ’C’, else ’I’.

67. ProStr - Return ’C’ if both NPs are pronouns
and their strings match exactly, otherwise ’I’.

68. Quantity - Returns ’C’ if the two NPs form
the pattern ¡sum¿ of ¡money¿ (e.g. loss of 1
million), else ’I’.

69. RuleResolve - If the two NPs are coreferent
according to a rule-based algorithm, then ’C’,
else ’I’.

70. SameParagraph - The NPs are found in the
same paragraph, then return ’Y’, else ’N’.

71. SameSentence - The NPs are found in the
same setence, returns ’Y’, else ’N’.

72. SentNum - The distance between the two NPs
in terms of sentences.

73. SoonStr - If after discarding determiners, the
strings two NPs match, then return ’C’, else
’I’.

74. SoonStrNonPro - If both NPs are non-
pronominal and after discarding determiners
the two NPs match, then return ’C’, else ’I’.

75. Span - Returns ’I’ if one NP spans the other,
else ’C’.

76. Subclass - If one NP’s WordNet class is a
subclass of the other NP return ’Y’ else ’N’.

77. Subject1 - Returns ’Y’ if NP1 is a subject,
otherwise ’N’.

78. Subject2 - Returns ’Y’ if NP2 is a subject,
otherwise ’N’.

79. Syntax - If the two NP’s have incompatible
values for BINDING, CONTRAINDICES,
SPAN, or MAXIMALNP, then returns ’I’,
else ’C’.

80. Title - If one or both NPs is a title, returns ’I’,
else ’C’.

81. unknwnClass - The class of the instance, ’+’
if the NPs are coreferent, else ’-’.

82. WeAntes - The antecedent is a form of ’We’.

83. WNSynonyms - Returns ’C’ if the NPs are
WordNet synonyms, else ’I’.

84. WordNetClass - Returns ’C’ if both NPs have
the same WordNet class, else ’I’.

85. WordNetDist - The distance in the WordNet
Synset tree between the two NPs.

86. WordNetSense - Returns the first WordNet
sense that both NPs share.

87. WordOverlap - If the intersection of the con-
tent words of the two nps is not empty, then
’C’, else ’I’.

88. WordsStr - If both NPs are non-pronominal
and the strings match, then ’C’, else ’I’.

89. WordsSubstr - If both NPs are non-
pronominal and one np is proper substrings of
the other with respect to content words, then
returns ’C’, else ’I’.

References
A. Bagga and B. Baldwin. 1998. Algorithms for scor-

ing coreference chains. In In Linguistic Coreference
Workshop at LREC 1998.

Baldridge, J. 2005. The OpenNLP project.
http://opennlp.sourceforge.net/. The OpenNLP
Project.

Eric Bengtson and Dan Roth. 2008. Understanding the
value of features for coreference resolution. In Pro-
ceedings of the 2008 Conference on Empirical Meth-
ods in Natural Language Processing, pages 294–
303. Association for Computational Linguistics.

Chih-Chung Chang and Chih-Jen Lin. 2001. Libsvm:
a library for support vector machines.

J. Finkel, S. Dingare, H. Nguyen, M. Nissim, and
C. Manning. 2004. Exploiting Context for Biomed-
ical Entity Recognition: From Syntax to the Web. In
Joint Workshop on Natural Language Processing in
Biomedicine and its Applications at COLING 2004.

T. Finley and T. Joachims. 2005. Supervised clustering
with support vector machines. In International Con-
ference on Machine Learning (ICML), pages 217–
224.

A. Haghighi and D. Klein. 2007. Unsupervised Coref-
erence Resolution in a Nonparametric Bayesian
Model. In Proceedings of the 45rd Annual Meeting
of the Association for Computational Linguistics.

T. Joachims. 2002. SVM light,
http://svmlight.joachims.org.

D. Klein and C. Manning. 2003. Fast Exact Inference
with a Factored Model for Natural Language Pars-
ing. In Advances in Neural Information Processing
Systems 15.

S. Lappin and H. Leass. 1994. An algorithm for
pronominal anaphora resolution. Computational
Linguistics, 20(4):535–561.

Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda
Kambhatla, and Salim Roukos. 2004. A mention-
synchronous coreference resolution algorithm based
on the bell tree. In Proceedings of the 42nd Annual
Meeting of the Association for Computational Lin-
guistics.

X. Luo. 2005. On Coreference Resolution Perfor-
mance Metrics. In Proceedings of the 2005 Human
Language Technology Conference / Conference on
Empirical Methods in Natural Language Process-
ing.

A. McCallum and B. Wellner. 2004. Conditional Mod-
els of Identity Uncertainty with Application to Noun
Coreference. In 18th Annual Conference on Neural
Information Processing Systems.

Thomas Morton. 1999. Using coreference for question
answering. In The 8th Text REtrieval Conference
(TREC-8), pages 85–89.

MUC-6. 1995. Coreference Task Definition. In Pro-
ceedings of the Sixth Message Understanding Con-
ference (MUC-6), pages 335–344.

MUC-7. 1997. Coreference Task Definition. In
Proceedings of the Seventh Message Understanding
Conference (MUC-7).

V. Ng and C. Cardie. 2002. Improving Machine Learn-
ing Approaches to Coreference Resolution. In Pro-
ceedings of the 40th Annual Meeting of the Associa-
tion for Computational Linguistics.

V. Ng. 2008. Unsupervised Models for Coreference
Resolution. In Proceedings of 2008 the Conference
on Empirical Methods in Natural Language Pro-
cessing (EMNLP-2008).

NIST. 2004. The ACE Evaluation Plan. NIST.

S. Petrov and D. Klein. 2007. Improved Inference for
Unlexicalized Parsing. In Proceedings of the Annual
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics (HLT/NAACL
2007).

M. Poesio and M. Kabadjov. 2004. A general-purpose,
off-the-shelf anaphora resolution module: imple-
mentation and preliminary evaluation. In LREC.

L. Qiu, M.-Y. Kan, and T.-S. Chua. 2004. A public
reference implementation of the rap anaphora reso-
lution algorithm. In LREC.

E. Riloff and W. Phillips. 2004. An Introduction to the
Sundance and AutoSlog Systems. Technical Report
UUCS-04-015, School of Computing, University of
Utah.

W. Soon, H. Ng, and D. Lim. 2001. A Machine
Learning Approach to Coreference of Noun Phrases.
Computational Linguistics, 27(4):521–541.

J. Steinberger, M. Poesio, M. Kabadjov, and K. Jezek.
2007. Two uses of anaphora resolution in summa-
rization. Information Processing and Management,
Special Issue on Summarization, 43:16631680.

V. Stoyanov, N. Gilbert, C. Cardie, and E. Riloff. 2009.
Conundrums in noun phrase coreference resolution:
Making sense of the state-of-the-art. In Proceedings
of the Joint Conference of the 47th Annual Meet-
ing of the Association for Computational Linguistics
and the 4th International Joint Conference on Natu-
ral Language Processing of the Asian Federation of
Natural Language Processing.

Y. Versley, S.P. Ponzetto, M. Poesio, V. Eidelman,
J. Jern, A.and Smith, X. Yang, and A. Moschitti.
2008. BART: A modular toolkit for coreference res-
olution. In LREC.

M. Vilain, J. Burger, J. Aberdeen, D. Connolly, and
L. Hirschman. 1995. A Model-Theoretic Corefer-
ence Scoring Theme. In Proceedings of the Sixth
Message Understanding Conference (MUC-6).

I. Witten and E. Frank. 2005. Data Mining: Practical
Machine Learning Tools and Techniques, 2nd Edi-
tion. Morgan Kaufmann.

Xiaofeng Yang, Guodong Zhou, Jian Su, and
Chew Lim Tan. 2003. Coreference resolution using
competition learning approach. In ACL ’03: Pro-
ceedings of the 41st Annual Meeting on Association
for Computational Linguistics, pages 176–183.

